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Abstract

The competitive exclusion principle (CEP) states that no equilibrium is possible if n species exploit fewer than n resources. This
principle does not appear to hold in nature, where high biodiversity is commonly observed, even in seemingly homogenous habitats.
Although various mechanisms, such as spatial heterogeneity or chaotic fluctuations, have been proposed to explain this coexistence,
none of them invalidates this principle. Here we evaluate whether principles of ecological stoichiometry can contribute to the stable
maintenance of biodiverse communities. Stoichiometric analysis recognizes that each organism is a mixture of multiple chemical
elements such as carbon (C), nitrogen (N), and phosphorus (P) that are present in various proportions in organisms. We incorporate
these principles into a standard predator—prey model to analyze competition between two predators on one autotrophic prey. The
model tracks two essential elements, C and P, in each species. We show that a stable equilibrium is possible with two predators on
this single prey. At this equilibrium both predators can be limited by the P content of the prey. The analysis suggests that chemical
heterogeneity within and among species provides new mechanisms that can support species coexistence and that may be important

in maintaining biodiversity.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

One of the oldest and most intriguing paradigms in
community ecology—the competitive exclusion princi-
ple (CEP)—states that at most # species can coexist on z
resources (Volterra, 1926; Gause, 1934; Hardin, 1960;
MacArthur and Levins, 1964; Levin, 1970). The
mathematical validity of this principle is largely in
disagreement with observations of a vast diversity of
species supported by seemingly few resources. The
renewed interest in this principle is fueled by its
relevance to a central problem in modern ecology:
finding and understanding mechanisms that maintain
the earth’s vast biodiversity. Since the time Hardin
(1959, 1960) coined the term “‘the competitive exclusion
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principle,” subsequent advances in theoretical ecology
(by no means a complete list below) have identified
several mechanisms that promote diversity. First, if
resources are not explicitly modeled, competitive exclu-
sion is not mandatory: Strobeck (1973) showed that n
species can coexist at a locally stable equilibrium in a
homogeneous (spatially and temporally) classical Lot-
ka—Volterra model with no resources. In such a model,
however, competition is expressed in an ad hoc fashion
via constant competition coefficients. In explicit resource
models, exploitative competition among consumers is
realized, as in real life, directly via the consumption of
shared resources. Second, even for models that explicitly
consider resources, the coexistence of n species on fewer
than n resources is possible via internally produced limit
cycles (Armstrong and McGehee, 1976; Abrams and
Holt, 2002) or chaotic fluctuations (Armstrong and
McGehee, 1980; Huisman and Weissing, 1999, 2000).
Third, other factors such as spatial (Durrett and Levin,
1994; Richards et al., 2000) or temporal (Butler et al.,



2 L Loladze et al. | Theoretical Population Biology 65 (2004) 1-15

1985; Lenas and Pavlou 1995; Chesson, 1994) hetero-
geneity, light fluctuations (Litchman and Klausmeier,
2001), predation (Holt and Lawton, 1994; Leibold,
1996; Chase et al., 2002), disturbance (Hastings, 1980),
and interference between consumers (Vance, 1984, 1985;
Kuang et al., 2003) provide mechanisms for coexistence.

Considering the multitude of various definitions of
CEP in the literature, for the sake of clarity, here by the
CEP, we mean the following concise formulation: a
stable equilibrium is impossible in a homogenecous
system with 7n species exploiting fewer than n resources.
Note that exploitative competition is assumed here; that
is, a situation in which consumers do not interfere
directly but affect each other via the consumption of
shared resources. In addition, spatial and temporal
homogeneity is assumed. Within these restrictions,
however, the CEP is extremely robust to various types
of models: whether resources are abiotic such as
chemical elements or biotic such as prey species
(Armstrong and McGehee, 1980), essential or substitu-
table (Leon and Tumpson, 1975; Tilman, 1982; Grover,
1997) the CEP holds firmly. All these models share the
same general structure: one set of equations describes
resource dynamics and the second set describes the
dynamics of consumers. The CEP follows as a rigorous
mathematical result under an assumption that consu-
mers and resources are in a predator—prey relationship.
In other words, the partial derivative of consumer
abundance with respect to resource abundance is
nonnegative, while the partial derivative of resource
abundance with respect to the consumer is nonpositive.
This assumption seems to be so commonsense that it is
usually incorporated into models without questioning its
validity. We will show, however, that in our model mass
balance laws and stoichiometric properties can break
this rule, that is, higher resource abundance can hurt
consumer growth, which in turn can facilitate coex-
istence of competing consumers.

In particular, any biotic resource (hereafter, prey), as
all life, consists of multiple abiotic resources that are
essential to its consumers. All known organisms require
carbon (C), oxygen (O), hydrogen (H), nitrogen (N),
and phosphorus (P) (in addition, all cellular organisms
require sulfur (S), potassium (K), calcium (Ca), sodium
(Na), and other elements). Moreover, while consumer
species share the requirement for the same nutrients,
they can differ in their chemical composition. In
addition to this chemical variety among consumer
species, autotrophic resources (i.e. plants and algae)
are known to exhibit highly variable intraspecific
chemical composition (Sterner and Elser, 2002). Can
such ‘“‘chemical diversity” within and among species
enhance biodiversity via previously unrecognized me-
chanisms? Answering this complex question is outside of
the scope of this paper and our general abilities, but
within the CEP framework, we can attack a closely

related but simpler question: can several consumers
stably coexist one a single prey that itself consists of
multiple chemical elements? The idea that a single prey
can represent more than one resource is not novel. For
example, different plant parts can provide distinct
resources to herbivores (Tilman, 1982). Abrams (1988)
demonstrated that variation in coloration among
individuals of a single prey species can provide more
than one potential resource to consumers. What is novel
in our approach is its reliance not on a particular
species-specific properties but on an undisputable fact
that any prey is always a package of multiple chemical
elements to all of its consumers.

Our choice of chemical elements rather than complex
biochemicals as a preferred ‘“chemical scale” for
modeling is not accidental. The overwhelming complex-
ity of organic compounds and their intricate metabolic
pathways leave us no hope to follow them with a
tractable model. However, on a finer scale of chemical
elements a simple yet powerful mass conservation law
holds with respect to each chemical element. Alfred
Lotka (1925), a physical chemist and an originator of
the famous Lotka—Volterra equations, advocated the
use of chemical elements as an essential tool for
understanding biological dynamics. Most recently,
Sterner and Elser (2002) have expanded Lotka’s vision
to develop the field of ecological stoichiometry.

Predator—prey and competitive interactions are
among the major forces that shape food webs and
ecological communities. It has been shown both
experimentally (Urabe and Sterner, 1996; Sterner et al.,
1998; Nelson et al., 2001; Urabe et al., 2002, 2003) and
theoretically (Andersen, 1997; Loladze et al., 2000;
Muller et al., 2001), that variable chemical composition
(i.e. stoichiometry) of prey can significantly affect
predator—prey dynamics. We are not aware, however,
of any prior work that addresses the issue of variable
prey stoichiometry and competition among herbivores.

Here, by capturing the critical elements of ecological
stoichiometry, we construct the simplest, in our opinion,
model needed to address this issue. Our motivation is to
find out whether it is at all possible for two herbivores to
stably coexist on one prey of variable quality. In the next
section, we construct the model. In Section 3, we analyze
it qualitatively, and then numerically and graphically
(with Monod functional responses). We also construct
bifurcation diagrams of the system along an implicit
light gradient. In the discussion, we address the
implications of these findings and suggest further
directions.

2. Model

We model two consumers exploiting one prey in a
system with no spatial heterogeneity or external
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variability. Our approach differs from conventional
consumer—-resource models, because we do not assume,
a priori, that higher prey density must either increase
predator growth or, in the case of feeding saturation,
leave it unchanged. Instead, the law of mass conserva-
tion will determine consumer growth in our model.

To have some concrete system in mind, we can think
of the prey as a single species of alga, while the
consumers are two distinct zooplankton species, all
placed in a well-mixed system open only to light and air.
(One can imagine a continuously stirred culture in a
uniformly lighted chamber with open top and clear
walls.) In the model construction, we follow a course
outlined in Loladze et al. (2000), which deals with one
consumer—one prey interactions.

Let us start with a conventional (MacArthur—
Rosenzweig-type) model, which describes a system of
two consumers feeding on one prey, here assumed to be
a photoautotroph at the base of the food web (e.g.
phytoplanktonic algae):

% = rx(l — %) —fi(xX)y1 — fa(x)y2, (la)
B evhom —din, (1b)
% = e2/2(X)y2 — days. (¢)

Here, x, y; and y, are the densities of the prey and the
two consumers respectively (in milligrams of C per liter,
(mg C)/l), r is the intrinsic growth rate of the prey
(day™"), di and d, are the specific loss rates of the
consumers that include respiration and death (day').
fi(x) and f>(x) are the consumers’ ingestion rates,
which we assume to follow Holling type II functional
response. In other words, fi(x) is a bounded smooth
function that satisfies the following assumptions:

fi(0)=0, f/(x)>0 and
f'(x)<0 for x>0, i=1,2. (2)

e; and e, are constant growth efficiencies (conversion
rates or yield constants) of converting ingested prey
biomass into consumer biomasses. The second law of
thermodynamics requires that e; and e; be <1. (Note
that this assumption of constant growth efficiency
together with (2) assures that higher prey density never
hurts predator growth.)

K represents a constant carrying capacity that we
relate to light in the following way: suppose that we fix
light intensity at a certain value, then let the prey (which
is a photoautotroph) grow with no consumers but with
ample nutrients. The prey density will increase until self-
shading ultimately stabilizes it at some value, K. Thus,
every K value corresponds to a specific limiting light
intensity and we might model the influence of higher
light intensity as having the effect of raising K, all else

being equal (Loladze et al., 2000). Much more mechan-
istic and realistic modeling of light limited growth exists
(Huisman and Weissing, 1994; Diehl, 2002). It is
possible, however, to show that under suitable para-
meter choices such more mechanistic models will closely
match the dynamics of our simpler model (J. Huisman,
pers. commun., derivations available upon request).
Because an inclusion of the mechanistic light limited
growth would significantly complicate our model, we do
not attempt it here.

For simplicity, we will model only two chemical
elements, P and C. The choice of C is clear, because this
element comprises the bulk of the dry weight of the most
organisms. Instead of P, however, one can choose any
other element as long as it is essential to all species in the
system (e.g. N, S, or Ca). (For numerical analysis,
however, we will use a particular feature of P manifested
in “the growth rate hypothesis” (Elser et al., 2000),
which links species growth rate to species P:C via rRNA
machinery.) The cellular physiology of autotrophs
allows them to exhibit highly variable eclemental
composition, mainly because of the presence of a large
central vacuole, which is unique to autotroph cells
(Sterner and Elser, 2002). For example, iron or calcium
concentrations can vary 100-fold or more in grass forage
(Adams, 1974). With regards to P, the green alga
Scenedesmus acutus can have cellular P:C ratios (by
mass) that range from 1.6 x 1073 to 13 x 1073, almost
an order of magnitude (e.g. Elser and Urabe, 1999). On
the other hand, in animals P:C varies much less within a
species (Sterner and Elser, 2002). For example, the
zooplankton Daphnia’s P:C stays within relatively
narrow bounds around 31 x 1073 by mass, decreasing
only by around 30% when food P:C is more than 20-
times lower than Daphnia’s P:C (Andersen and Hessen,
1991; Sterner and Hessen, 1994; DeMott, 1998). Using
only two elements is a gross simplification of reality, but
it is a qualitative step forward from conventional
“chemically homogeneous” models like model (1). Most
importantly, the inclusion of just two elements allows us
to explicitly model prey quality by applying the mass
balance law.

We express the above considerations in the following
assumptions:

(A1): Prey’s P:C varies, but never falls below a
minimum ¢ (mg P/mg C); the two consumers maintain a
constant P:C, s5; and s, (mg P/mg C), respectively.

(A2): The system is closed for P, with a total of Pr
((mg P)/1), which is divided into two pools: P in the
consumers and the rest as P potentially available for the
prey.

From these two assumptions it follows that P
available for the prey at any given time is (Py — sy —
52y2) (mg P)/I. Recalling that P:C in the prey should be
at least ¢ (mg P/mg C), one obtains that the prey density
cannot exceed (Pr — s1y1 —s2)2)/q (mg C)/L. In the
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spirit of Liebig’s Law of the Minimum, the combination
of light and P limits the carrying capacity of the prey to

P — _
min (KM) 3)
q

To determine prey’s P:C at any given time, we follow
Andersen (1997) by assuming that the prey can absorb
all potentially available P. This assumption is not
suitable for modeling multiple competing autotrophs,
because uptake of free P is crucial for the competition
outcome and, thus, must be modeled explicitly. For
terrestrial systems, it may not be suitable for modeling
even one autotroph, because soil is a major stock of P.
However, it is not far from reality in freshwater systems,
where algae can absorb almost all available P, bringing
free phosphate levels in water below detection. And
since we neither model multiple preys nor terrestrial
systems, we make this assumption, which means that
prey’s P:C (mg P : mg C) at any time is

(Pt — s1y1 — $202)/ x. 4)

One issue needs a clarification: since we do not impose
the maximal P quota on the prey, its P:C can become
potentially unbounded for small x according to (4). As
we will show later, this property does not have
undesirable effects on the dynamics, because when
prey’s P:C exceeds that of the consumers (i.e.
>max{sy,s2}), the consumers become limited by C
and prey’s P:C, however large it is, become dynamically
irrelevant.

While prey stoichiometry varies according to (4), the
ith consumer maintains its constant (homeostatic) P:C,
s;. If prey’s P:C >s;, then the ith consumer converts
consumed prey with the maximal (in C terms) efficiency
e; and egests or excretes any excess of ingested P. If
prey’s P:C is <s;, then the ith consumer wastes the
excess of ingested C. This waste is assumed to be
proportional to the ratio of prey’s P:C to ith consumer’s
P:C (Andersen, 1997), which reduces the growth
efficiency in C terms. The following minimum function
provides the simplest way to capture such effects of
variable prey quality on consumers’ growth efficiency:

eimin<1,(PT_sly] _SM)/X). (5)

Si

An alternative formulation that does not use minimum
functions is possible using the concept of synthesizing
units (Muller et al., 2001).

The following model simultaneously captures expres-
sions (3) and (5):

dx
— =rx

X
dt (1 ~ min(K, (Pr — siy1 — Sz)’z)/ﬂ))
= i)y = fa(x)y2, (6a)

d Pr— —
yl:amin(l,( r =S SzyZ)/x>

dr 51

x fi(x)y1 — diy1, (6b)
dya —e) min<]7(PT — Sy - Sz)’z)/x>
dt 852

X f2(xX)y2 — doya. (6¢)

Note, that the prey’s growth rate in the absence of
consumers,

@ = rx(l — al )
dt min(K, (Pr — s1y1 — 5202)/q))’

can be equivalently represented as the minimum of a
logistic equation and of a biomass version of Droop’s
(1974) model:

gzmm(m(l -5,

rx(l (Pr— S1y1q— Szyz)/x)) @

3. Analysis
3.1. Analytical analysis

It is easy to see why conventional model (1) almost
never has a positive equilibrium, i.e. an equilibrium with
all three species coexisting. If such an equilibrium exists,
then the prey density, x*, at such an equilibrium should
simultaneously satisfy the following two equations to
keep consumers’ net growth rates equal to zero:

A =D and ) =2

el e’

(8)

which is almost impossible—the set of parameter values
satisfying both equations is of measure zero. Moreover,
Armstrong and McGehee (1980) rigorously showed that
for the class of models, to which model (1) belongs, an
attracting positive equilibrium is not only almost
impossible, but is absolutely impossible with n species
on fewer than n resources. Nevertheless, we will show
that for our stoichiometrically explicit model (6), which
does not belong to any of the classes analyzed by
Armstrong and McGehee (1980), such an equilibrium
exists.

Appendix A.1 shows that the model (6) is well defined
(this includes the case when x—0) and that solutions to
initial values are unique.

Stoichiometric considerations provide natural bounds
on densities of all species. Phosphorus sets a clear upper
bound: the sum of P in the prey and the two consumers
cannot exceed Pr—the total P in the system. This
property, together with the invariance of solutions in
forward time, is proved in the following theorem.
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Theorem 1. Let k = min(K, Py /q). Then, solutions with
initial conditions in
A={(x,y1,p2) : 0<x<k, 0<yy, 0<ys, gx+ 51y

+ sy<Pr} )

remain there for all forward times.

Proof is in Appendix A.2.

By 4, we denote the region A with its entire boundary
except of the biologically unrealistic edge 7=
{(x,y1,02):x =0, Pr=s1y1+s)2}. (At this edge
consumers contain all P, thus there is no prey in the
system.) That is,

A= (04\p)uA.

To simplify our analysis, we rewrite system (6) in the
following form:

X,:XF(X»)’IJZ)7 (IOa)
Vi = 01Gi(x,31,12), (10Db)
Vs = 12Gax, 31, 12), (10c)
where

X
F X, s =r 1 — N
(x,71,¥2) ( min(K, (Pr — siy1 — Sz)’z)/@))

2
i)
; i
Gi(xay|7y2)
— e min(l, (Pr *S‘y;f S2y2)/x>ﬁ(x) —di (lla)
— emin (ﬁ(x)7PT — 851y — Szyzfi(x))
Si X
—d, i=1,2 (11b)

are per capita net growth rates of the prey and the two
consumers, respectively.

Condition (A.1) ensures that all partial derivatives of
F and G; exist almost everywhere on A:

oF r

ax  min(K, (Pr —siy1 — $202)/q)

_jie%ﬁfﬁ. (12)

i=1

Fori,j=1,2, we have

i . Pr—. —
_f(x)<0 if K<l — S0 ?2)/27
X q
o | rgsix
i (P — sip1 — s232)°
RGO it k> Zr =S =Sy
X q

(13)

Pr —s1y1 — $2)2

e f{ (x)>0 if ">,
9G; o, BT = S1)1 = S2y2
ox ) Si
!
A Pr— _
X(iﬁ><0 if Proswi—sp o
X X
(14)
Pr —s1y1 —
oG 0 el PA B P P S
i X
ST f Pr— _
Jy; e, 8.fi(x) <0 if LTS S2y2<s,».
S; X X
(15)

An unusual and very important property of this
system is that the sign of 90G;/dx, i = 1,2 changes from
positive to negative as soon as prey’s P:C (4) is < P:C of
the ith consumer, s;, as (14) shows. These negative
derivatives mean that, all else being equal, higher prey
density reduces growth rates of consumers! This effect is
in sharp contrast to many population dynamics models,
which routinely assume that higher prey density cannot
hurt predator growth. Note that neither we imposed this
effect on the model nor did we explicitly built it in any of
our assumptions; it follows from the stoichiometric
properties of model (6).

An intuitive explanation for this effect is following: if
prey quality is bad, i.e. if

i=12 (16)

then any increase in the prey density, x, further

deteriorates prey quality, which offsets any benefit that

higher prey density may provide to already P limited

consumers. Let us take a more rigorous look at the effect

of prey quality on the species interactions and coexistence.
If prey quality is good for both consumers, i.e. if

i=1,2 (17)

then equations for consumer growth ((6b), (6c))
degenerate to those in conventional system ((1b),(1c))
and, according to conditions (8), an equilibrium is
almost impossible. Moreover, as Appendix A.3 shows,
at such an unlikely equilibrium the ecosystem matrix
(it is not a Jacobian but matrix (A.9), where the ijth term
reflects the effect of the jth species on the ith species per
capita growth rate) takes this form:

(Pr — s1y1 — $202)/x <,

(Pr — 511 — $2)2) /x> s,

+- - -
+ 0 o0 |, (18)
+ 0 0

meaning that conventional predator—prey, i.e. (+,—)
type, interactions exist between the consumers and the
prey.

The picture radically changes if prey quality is
bad, i.e. if (16) hold. Stable coexistence becomes a
viable possibility: Appendix A.3 contains analytical
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Table 1

Parameters (P) of model (6) with their values (V) used for numerical simulations.

P Description v Units

r Intrinsic growth rate of the prey 0.93 day™!

K Resource carrying capacity determined by light 0—1.75 (mg O)/1

¢l Maximal ingestion rate of the 1st consumer 0.7 day™!

&) Maximal ingestion rate of the 2nd consumer 0.8 day™!

a Half-saturation constant of the 1st consumer 0.3 (mg C)/1

a Half-saturation constant of the 2nd consumer 0.2 (mg O)/1

e Maximal conversion rate of the 1st consumer 0.72

e Maximal conversion rate of the 2nd consumer 0.76

d Loss rate of the 1st consumer 0.23 day™!

d> Loss rate of the 2nd consumer 0.2 day"1

51 Constant P:C of the 1st consumer 0.032 (mg P)/(mg C)
K% Constant P:C of the 2st consumer 0.05 (mg P)/(mg C)
q Minimal possible P:C of the prey 0.004 (mg P)/(mg C)
Pr Total P in the system 0.03 (mg P)/1

expressions for equilibrium values ((A.10), (A.11)), and
the next sections shows numerically that such an
equilibrium is a structurally stable attracting node.
Eq. (A.10) and (A.11) suggest an interesting dependence
of equilibrium values on light intensity: increasing
energy flow into this food web (i.e. increasing parameter
K), does not change prey density, but can increase
density of one consumer and hurt the other one. In the
next section, a bifurcation diagram shows exactly such a
pattern.

Moreover, under bad prey quality conditions, ecosys-
tem matrix takes the following form (Appendix A.3
contains the derivations and also covers boundary
equilibria):

+/- - -
(19)

meaning that all three species compete with each other,
i.e. interactions between them are (—, —) type. Note also
that each consumer interferes with itself and the other
consumer. It has been shown that interference among
consumers can enhance possibilities for coexistence
(Vance, 1985; Kuang et al., 2003).

Finally, prey quality can be bad for one consumer,
but good for the other. In this case, one consumer will
be in predator—prey relationship with the prey, while the
other will be competing with the prey. The next section
presents a stable equilibrium for such a case as well. The
above analysis illustrates that changes in prey stoichio-
metry can fundamentally alter interactions in this simple
food web.

3.2. Numerical analysis

To numerically illustrate the stable coexistence of
all three species and to further the analysis of model (6),

filx) =

we choose both fi(x), i=1,2 as Monod (Michaelis—
Menten) functions:

CiX
ai +x’

i=1,2. (20)

Table 1 lists parameter values within biologically
plausible range (Urabe and Sterner, 1996; Andersen,
1997; Elser and Urabe, 1999). These values indicate that
the second consumer needs more P (s»>s;) but, as a
trade-off, has a higher growth rate (e f2(x) > e f1(x) for
x>0) if prey quality is good. Such a trade-off reflects
“the growth rate hypothesis” (Elser et al., 2000) and has
been empirically supported in studies of zooplankton
(Main et al., 1997). Our goal here is only to illustrate
that coexistent equilibrium is possible and that it can be
asymptotically stable (with a large attraction basin) as
well as structurally stable. Although such an equilibrium
can arise for parameters with biologically meaningful
values, we leave open the question of how widespread
such type of coexistence is in nature. We would very
much want to relate our numerical simulations to actual
laboratory or field experiments on the effects of variable
prey stoichiometry on competition among herbivorous
taxa, but we are not aware of any such experiments.

The most interesting issue seems to be the dependence
of coexistence on light intensity, i.e. energy flow into the
system. Light intensity can change prey quality (e.g.
Urabe and Sterner, 1996), and as analytical analysis in
the previous section suggests, such change in prey’s P:C
can profoundly affect this food web and the competition
between consumers. Bifurcation diagrams provide a
clear and visual way to understand how the behavior of
a dynamical system depends on a parameter. In Fig. 1,
we present such a diagram, where species densities are
drawn along the gradient of light intensity implicitly
represented by K.

When the light intensity is low to medium (hereafter
values are rounded to the nearest hundredth),
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Fig. 1. Both consumers can stably coexist on a single prey, while prey quality (prey’s P:C) limits them both (0.92< K <1.08). This is a bifurcation
diagram of all three species densities plotted (after transients) against parameter K, where K indirectly reflects energy (light) input into the system.
Each line represents species density at a stable equilibrium, except when it splits into two lines to represent the maximum and the minimum species
densities at a stable limit cycle. All parameters are as in Table 1, but K varies from 0 to 1.8 (all initial densities that we tried lead to the picture). For
K <0.09, neither consumer persists due to very low food quantity, but for K >1.75—due to very low food quality. As K grows from 0.09 to 0.38, a
consumer with higher intrinsic growth rate (and higher P:C) increases its density. But at K = 0.38, the stable equilibrium with this consumer and the
prey loses its stability to a limit cycle, an amplitude of which grows with K (from 0.38 to 0.92). The system here exhibits “the paradox of enrichment”.
This trend stops at K = 0.92, when the limit cycle disappears and the consumer with a lower P:C (and lower intrinsic growth rate) invades. All three
species coexist at this newly emerged stable equilibrium. However, as K further grows from 0.92 to 1.08, worsening food quality gradually lowers the
density of P-rich consumer and, despite abundant food quantity, eventually drives this consumer to a deterministic extinction (‘‘the paradox of
energy enrichment”). As K increases from 1.08 to 1.75, the other consumer meets the same fate. A vertical dotted line represents an equilibrium at

K =1, which also is shown in Fig. 2.

0<K <0.92, the prey quality is sufficiently high and the
dynamics of the system matches closely the behavior of
conventional model (1) with f;(x) given by (20). In
particular, for 0 <K <0.09, none of the consumers can
survive due to low food abundance. For 0.09< K <0.92,
the CEP holds and the consumer with lower break-even
prey concentration wins. Note that at K = 0.38, the
system undergoes Rosenzweig’s (1971) paradox of
enrichment via Hopf bifurcation: stable equilibrium
loses its stability to a limit cycle, the period of which
increases with K. This period would have continued to
increase with K for a conventional system (1), but a
paradoxical situation happens in system (6): under high
light intensity, 0.92<K <1.08, both consumers coexist
at a stable equilibrium exploiting a single prey! This is
possible because high light intensity lowers prey quality
to the point, where the consumer with lower P demand
is able to invade the system. Note that as K increases
from 0.92 to 1.08, the prey equilibrium density does not
change, but the density of P-rich consumer declines,
while that of P-poor consumer increases. Our analytical
analysis suggested exactly such a pattern. In the next
section, we show that at this equilibrium both con-
sumers are limited by the P content of the prey.

All three species coexist at an equilibrium for any
Ke(0.92,1.08). Let us consider closer such an equili-
brium, for one value of K in this interval. For example,
for K =1, the system has the following positive

equilibrium:
(x,¥1,2) = (0.59,0.26,0.17). (21)

A dotted line in Fig. 1 indicates this equilibrium. Fig. 2
shows how the system approaches this equilibrium over
time. Calculations show that all eigenvalues are real and
negative meaning that the equilibrium is a locally
asymptotically stable node. From (A.10), (A.11), and
(20), it follows that this equilibrium is unique. It can be
shown that all boundary equilibria are unstable and the
system is persistent. (That is, all species, if present, will
coexist. This also implies that the invasions of either
consumer species will be successful.) Moreover, all our
numerical simulations indicate that trajectories with
positive initial conditions in 4 converge to equilibrium
(21). Numerical analysis also shows that varying every
other parameter around the value given in Table 1, does
not destroy the coexistence at a stable equilibrium: for
example, for Py such an interval is (0.026, 0.032), and
for ¢ it is (0, 0.012). In other words, this stable node is
also structurally stable.

A peculiar intermediate scenario can occur, when prey
quality is bad for P-rich consumer (i.e. a consumer with
a higher P:C ratio, s;), but good for P-poor consumer.
Fig. 3 shows a bifurcation diagram for the indicated
therein parameter set, where all species coexist at fixed
densities for any K €(0.35,0.7). For this interval of light
intensity, prey’s P:C (4) lies between P:C of the two
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Fig. 2. The densities of each species plotted against time. Parameters are in a biologically realistic range as in Table 1 and K = 1 (the initial
conditions are x = y; =y, = 0.1 (mg C)/l). Both consumers are limited by the resource quality and the species densities eventually settle to fixed
values. A vertical dotted line indicates this equilibrium in Fig. 1.
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Fig. 3. Both consumers can stably coexist at an equilibrium, but unlike Fig. 1, prey quantity limits P-poor consumer and prey quality limits P-rich
one. An explanation of the diagram as in Fig. 1, but for the following parameters: r = 1.4, ¢; = 0.6, ¢; = 0.63, a; = 0.36, a; = 0.45, ¢, = 0.8,
e, = 0.85, Pr = 0.036, ¢ = 0.003, sy = 0.025, 5, = 0.038, d; = 0.12, d» = 0.1 and K ranging from 0 to 1.4. Not only all three species can coexist at a
stable equilibrium (0.35<K <0.7), but also they can coexist via oscillations (0.7 <K <0.83). For K <0.1, neither consumer can persist due to very
low food quantity, but for K>0.83, P-rich consumer cannot persist due to very low food quality (very low prey’s P:C).

consumers, s; and s. Interestingly, for higher light
intensity, Ke(0.7,0.83), both consumers still coexist,
but in an oscillatory fashion with prey quality limiting
P-poor consumer as well.

3.3. Graphical analysis

Since system (6) involves three differential equations,
its phase space is three dimensional. First, let us consider
a simpler two-dimensional case: a single consumer on
one prey. This case was rigorously analyzed in Loladze
et al. (2000) using the method of nullclines. A nullcline

(or Zero Net Growth Isoclines (ZNGI), Tilman, 1982) is
the set of points (on the phase plane) at which species’
growth rate is zero. Hence, if nullclines of all species
intersect at some common point, then the growth rate of
every species is zero at such a point, making it an
equilibrium. The stability type of such an equilibrium
can sometimes be determined by the way nullclines
intersect (e.g. Rosenzweig, 1971; Loladze et al., 2000).
As we see in Fig. 4, the resource nullcline is hump
shaped, a usual feature of many predator—prey models.
The consumer nullcline, however, has an unusual shape
of a right triangle (in conventional consumer—resource
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Fig. 4. (from Loladze et al. (2000)). Stoichiometric properties confine dynamics of one consumer—one prey model to a trapezoid-shaped area and
divide the phase plane into two regions. In region I, like in classical Lotka—Volterra model, food quantity limits consumer growth. In shaded Region
11, food quality (prey’s P:C) constrains consumer growth. Competition for P between the consumer and the prey alters their interactions from (4, —)
in region I to (—, —) in region II. This bends the consumer nullcline in region II. This shape of the consumer nullcline, with two x-intercepts, creates
the potential for multiple positive steady states. A solid circle denotes a stable equilibrium, clear circles - unstable equilibriums.

models, it is a vertical line or an increasing curve). Here,
multiple equilibria are possible because two nullclines
with such shapes can intersect more than once. The
vertical segment of the consumer nullcline lies in a
region where the prey quantity limits the consumer like
in conventional predator—prey models. The slanted
segment of the consumer nullcline lies in a region where
prey quality limits the consumer and novel dynamics
arise.

Introducing the second consumer adds a third
dimension to Fig. 4 and, instead of nullclines on the
phase plane, we have nullsurfaces in the phase space.
But we can continue analysis on the plane by viewing a
slice of the phase space passing through an equilibrium
at which all three species stably coexist. For example, for
equilibrium (21), the slice produced by plane y; = 0.26
(mg C)/1 yields Fig. 5 (slicing with plane y, = 0.17 yields
a similar picture). Fig. 5, similar to Fig. 4, shows that
coexisting consumers are limited by prey quality,
because equilibrium lies on the slanted part of each
consumer’s nullsurfaces. Indeed, at equilibrium (21),
inequalities (16) hold, implying that both consumers are
limited by the same element in the prey. Chesson (2000),
discussing stable coexistence, points out that it “‘neces-
sarily requires important ecological differences between
species and that often involve trade-offs”. There is such
a trade-off in our case. P-rich consumer has a lower
break-even concentration, i.e. R* value (Tilman, 1982)
or the smallest x-intercept (Fig. 5). Consequently, this
consumer wins when food quantity limits both con-
sumers. However, as Fig. 5 shows, P-poor consumer, as
a trade-off, has larger second x-intercept. By analogy
with R*, we can denote this intercept as Q* (Q for

“quality”), because it determines the lowest food quality
(Pr/Q%) that can support a consumer in the absence of
competitors. For ith consumer, R* and Q* are the
solutions of the following equation:

eﬂnin(l,PT/ >ﬁ(x)—di—0, i=1,2. (22)

1

(Because Fig. 5 is a slice of the phase space, actual O*
values for both consumers are higher than depicted x-
intercepts, 1.62 for P-rich consumer and 1.75 for P-poor
one.) The trade-off between R* and Q* values allows
two consumers to stably coexist.

Another way to look at the equilibrium coexistence is
to use the perspective of the resource competition theory
(Leon and Tumpson, 1975; Tilman, 1982; Grover,
1997), where nullclines, i.e. ZNGIs, are drawn on the
plane with each axes representing availability of one
abiotic nutrient. For the case of essential nutrients,
nullcline for each consumer is L shaped. Because the
vertical segments of these two L’s are parallel, they
cannot intersect; the same is true for horizontal
segments. That is why in the resource competition
theory, stable coexistence is impossible for both
consumers if both are limited by the same nutrient.
Analogously, we can draw such nullclines for consumers
in system (6) on a plane with axes representing
availability of C and P. Fig. 6 shows that, instead of
being L-shaped, such nullclines take the shape of tilted
V’s, where the angle of the tilt is species-specific. The
segments representing P limitation on the two V-
nullclines intersect to yield a stable equilibrium. This
provides graphical explanation of why prey’s P content
can limit both consumers at the coexistent equilibrium.
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Fig. 5. For K = 1, slicing the phase space at equilibrium (0.59, 0.26, 0.17) using plane y; = 0.26 produces picture analogous to Fig. 4. The nullsurface
of each consumer has two x-intercepts: the one closer to the origin is consumer’s R* value, which determines the winner when the system is governed
by food quantity; the other x-intercept is consumer’s Q* value, which defines the lowest food quality (P7/Q*) that can support the consumer in the
system with no competitors. The trade-off between R* value (the smaller is better) and Q* value (the larger is better) allows two consumers to stably
coexist.
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Fig. 6. Analogous to the resource competition theory, we draw consumer nullclines on the C x P phase plane. Instead of usual L shapes, the
nullclines take the shape of tilted V, where the angle of the tilt depends on consumer’s stoichiometric properties. This shape can lead to an attracting
equilibrium as shown, where both consumers coexist, even though they both are limited by the same chemical element in the prey—P.

4. Discussion stable equilibrium. Such an equilibrium is also structu-
rally stable, i.e. slight variations in the values of any of

We showed that chemical heterogeneity within and the parameters do not destroy it. This result is surprising
among species can promote species coexistence, at least in the light of the CEP, where a stable equilibrium is
in the simple food web analyzed above. In particular, impossible in a homogeneous system with n consumers

two consumers exploiting a single prey can coexist at a exploiting fewer than n preys. Since the CEP is a
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rigorous theoretical result (Armstrong and McGehee,
1980), one may ask why our result is mathematically
possible at all. Our model, unlike conventional resource
based models, does not assume a (+,—) relationship
between consumers and preys nor does it have linear
growth assumptions as in Levin’s (1970) “limiting
factor” model. Instead, it relies on the fact that all
species share common essential chemical elements, but
in different proportions. Consumer species differ in their
chemical constitution, both from each other and from
the resources they consume. Model (6) captures this by
considering consumers with distinct P:Cs, while allowing
the P:C of autotrophic prey to vary, as it does in nature.
It is a fact that any prey contains several chemical
elements that are essential to all of its consumers (e.g. C,
N, P, S, K, and Ca). The concentrations of these
elements, however, vary significantly in autotrophs
(Sterner and Elser, 2002; Adams, 1974), which makes
autotrophs into channels of variable quality through
which multiple nutrients flow to their consumers.
Altering the stoichiometry of these channels can
profoundly affect food webs and species coexistence.

Stoichiometric constraints naturally bound popula-
tion densities: every organism requires at least some
amount of each essential chemical element. Therefore,
the total amount of this element in the system limits the
overall biomass as shown in Theorem 1 for P. All three
species in our system, and in fact, all species in any
ecosystem, share a common need for C and P. Such
shared requirements for essential elements connect
population characteristics to ecosystem properties, and
create important feedbacks between these two levels of
organizational complexity. Theorem 1 proves one
example of such dependence: all dynamics in the system
are confined to a region defined by the interplay between
ecosystem properties (total P, light intensity) and
species-specific  stoichiometries (the consumers’ P:C
and the prey’s minimal P:C). Moreover, the prey’s
carrying capacity (Eq. (3)) is not static, as is assumed in
the logistic equation (contained in (la)), but instead is a
dynamic quantity that depends on consumer densities,
energy inflow, and total P .

In addition to providing biologically meaningful
bounds on the dynamics, the inclusion of multiple
elements and their ratios yields novel dynamics within
these bounds. When prey quality is good, the sheer
quantity of the resource limits consumers. The resource
competition theory completely predicts the dynamics:
the consumer with the lowest break-even concentration
wins (see Eq.(8) and Fig. 1, when 0<K<0.92).
However, when prey quality, is bad, a novel attracting
equilibrium can arise (determined by Egs. (A.10) and
(A.11) and shown in Fig. 1, when 0.92 <K <1.08) with
all three species coexisting.

We caution, however, that although stoichiometric
considerations enhance possibilities for coexistence at an

equilibrium, nevertheless such possibilities are limited.
For example, coexistence at a stable equilibrium is
impossible when we add a third competitor to system (6)
but continue to track only two elements, C and P. This
may suggest that the CEP is still valid, because still at
most two consumers can coexist on two chemical
elements (abiotic resources) that are just packaged in
one prey. Abrams (1988), discussing the problem of
counting resources in the context of the CEP, stated that
“it would clearly be inappropriate to define resources in
such a way that the theory [of the CEP] is simply false”.
Given our result then, for the CEP to hold, one should
not count a prey species as a single resource but as a
source of multiple abiotic resources to all its consumers.
However, even with such considerations, the analyzed
equilibrium (21) is intriguing, because it exists with two
consumers simultaneously limited by a single essential
element in the prey—P. In addition, at such an
equilibrium, the two consumers and the prey are all
competitors (as the negative signs in the ecosystem
matrix (19) indicate), and one can argue that three
competitors coexist on just two distinct abiotic re-
sources, C and P.

Such coexistence is achieved in model (6) without
any spatial heterogeneity and with no external fluctua-
tions. Instead, chemical heterogeneity within and
among species alone provides new mechanisms for
coexistence. This raises a question of the role of
such heterogeneity in supporting the puzzling bio-
diversity on Earth. Note that the bad quality of the
prey weakens consumer—prey interactions by limiting C
(energy) flow from the prey into the consumer bio-
mass. As we have shown here (Figs. 1 and 3), such
weakening promotes coexistence, a result that agrees
with “‘the weak interaction strength” hypothesis
(McCann et al., 1998). This suggests that ecological
stoichiometry may play a role in the biodiversity-
stability debate (McCann, 2000), particularly if multi-
ple chemical elements are considered. Though P is of
special interest because it appears tightly linked to
growth rates of individual organisms via P-rich rRNA,
which is required in high concentration to achieve
rapid growth rate (Elser et al., 1996), other elements
(e.g. N, Ca, Fe, I) may also have important effects on
ecological interactions (Sterner and Elser, 2002; Mile-
wski and Diamond, 2000; Williams and Frausto da
Silva, 2001). For example, Daufresne and Loreau
(2001a) investigated how the difference in N:P ratio
between plants and herbivores affects plant nutrient
limitation.

There are other arecas of population dynamics and
ecology where ecological stoichiometry may provide
new insights. Chemostat theory is one of the most
thoroughly studied parts of population dynamics (e.g.
Hsu et al., 1981; Smith and Waltman, 1995; Li et al.,
2000). This theory, in which nutrients are central,
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is particularly suitable for stoichiometric extensions.
Another interesting avenue is a coupling of stoichio-
metric effects with spatial ones. Work by Fagan and
Bishop (2000) on Mount St. Helens suggests that
nutritional quality of invading plants may depend on
their spatial position, leading to differential effects on
herbivores and on the dynamics of primary succession.
Codeco and Grover (2001) provided another starting
point by considering the effects of various P:C supply
ratios on competition between algae and bacteria in a
gradostat (interconnected multiple chemostats). Fryxell
(1991) investigated how forage quality may affect spatial
distribution of herbivores. Fryxell did not express forage
quality as stoichiometric ratios but instead used digest-
ibility as a plant quality indicator. Other possible
indicators could be plant toxicity or resistance to
grazing, and all these indicators are not necessarily
mutually exclusive. Daufresne and Loreau (2001b)
provided the first application of stoichiometric princi-
ples for modeling of autotroph-decomposer commu-
nities. Grover (2002) investigated how stoichiometric
constraints, coupled with grazing pressure, affect coex-
istence of two prey species on two resources. Work by
Diehl (2003) is an original application of stoichiometric
models to the evolution of omnivory. By incorporating
resource stoichiometry into our understanding of con-
sumer—-resource dynamics, it may eventually be possible
to characterize opportunities for consumer coexistence
in terms of temporal variability in resource quality much
the way spatial heterogeneity has proven critical to
coexistence in some systems.

Understanding how the changing balance of chemical
elements affects populations and ecosystems becomes
ever more important as human activities profoundly
alter the global cycles of C, P and other elements
essential for all life such as N and S. These changes can
alter the stoichiometry of plants and algac—the
foundation of virtually all food webs in nature. For
example, it is well established that elevated carbon
dioxide (CO,;), on average, lowers N:C ratio in plants
(Cotrufo et al., 1998; Jablonski et al., 2002). It has
recently been shown that elevated CO,, similarly to
increased light intensity, can decrease P:C ratio in algae
(Urabe et al., 2003) and can also alter concentrations of
other vital macro- and micro-elements in wild and
cultivated plants (Loladze, 2002). How might such
changes affect species interactions and Earth’s biodi-
versity? In model (6) with only two chemical elements,
increase in light intensity changed the stoichiometry of
one prey species, which in turn profoundly affected
the coexistence of two consumers. It is plausible that
similar effects take place in real ecosystems consisting
of multiple elements and multitude of species, in
which anthropogenic impacts are likely altering the
nutrient content of autotrophs at the base of Earth’s
food webs.
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Appendix A
A.1. System (6) is well defined

Proof. From conditions (2) it follows that for f;(x)/x
the following holds:

lim fix) =f'(0)<oo and

x-0 X

(@>,<0 for x>0, i=1,2. (A.1)

Thus, yi(¢) is well defined as x— 0, since for i = 1,2,

Pr—s —
min(l, T —S1)1 S2y2>f,-(x)

X

— min (f}(x), (Pr — 5101 — $2)2) i(x))

X

Condition (A.1) ensures that the functions at the right-
hand sides of (6) are locally Lipschitzian, which yields
unique solutions to initial values. [J

A.2. The proof of the Theorem 1 on the boundedness
and invariance of solutions

Proof. Let us prove by contradiction, i.e. assume that
there is time ¢ >0, s.t. a trajectory with initial
conditions in 4 touches or crosses the boundary 04
for the first time. Since the boundary consists of at most
five surfaces (four if K> Pr/q), we consider five possible
cases of crossing the boundary: x(#)=0,x(t") =
k=min(K, Pr/q), () =0,y2(t*) =0 and gx(¢*) +
sy (*) 4+ s232(t") = Pr.

Case 1: Assume x(*) = 0 (here we exclude the edge
Pr =s1y1 — 5oy, lying on x =0 plane). Let Py, =
mineo ) (Pr —s1y1(7) —s202(1)) >0, also let J; =
max;cfo~¥i(¢) and note that f;(x)<f/(0)x. Then,

N x(1)
(1) =rx(r) (1 min(K, (Pr — sy (1) - Szyz(t))/q)>

2
— 3 A
i=1

2
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where o is some constant. Thus, x(¢) > x(0)e* >0, which
implies that x(7*)>0.
Case 2: Assume x(t*) = k. Then

¥ () <rx(t) (1 - ﬁ%) <rx(t)(1 - %)

The standard comparison argument yields that x(z) <k
for all 1=0.

Cases 3 and 4: Assume that y;(¢*) = 0 or y»(¢*) = 0.
Since yi(t)= — d;y:(¢) it follows that y;(¢) >y;(0)e % >0,
i=1,2for t=0.

Case 5 (includes the edge excluded in case 1): Assume

gx(£°) + s1y1(2°) + s2p2(t") = Pr. (A.2)

Since for all €0, 1), gx(¢) + s1y1(¢) + s202(¢) <Pr, it
follows that

gx' (1) + s1), (1) + 520517) 2 0. (A.3)

First, let us show that x(¢*)#0 (to avoid division by 0
later). If x(#*) = 0, then s,y (¢*) + s202(¢) = Pr.
However,

(e,»(PT —S1)1 — Szyz)@)ﬁ - di)’i)

-

(5131 + 5202)' <
X

i=1

(ei(Pr — siy1 + $202) 17 (0)y;)

N
M-

1

st Szy2>
)

sompr(1-21

|
'M'\’

i=1

and the standard comparison argument yields that
siy1(y) + say2(f) < Pr for all 120. Hence, x(¢*)#0.

Observe that at ¢*, the producer reaches its carrying
capacity determined by available P and has the lowest
quality, ¢, because (A.2) implies that

(Pr —sun (") = s2ya2(1)) /g = x(2°).

Substituting it to (6a), yields:

% 2
X’([*) :rX(f‘)(] _%) _ ;fi(x(l‘*))yi(l*)
< =S e (A4)

From (A.2) it also follows that (Pr—s1y(f*) —
s2y2(1*))/x(¢*) = q. Substituting it to (6b), (6¢), yields
bounds on yi(r*), i=1,2:

ﬂﬁsqm%hﬁﬂMWMW)

<a§ﬁww»wwy (A.5)

Using (A.4), (A.5) and the fact that ¢; <1, we obtain the
following:

gx' (") + 5191 (") + $205(1")
2
<> (=14 e)g filx(t))yi(t) <0.
i=1

This contradicts (A.3) and completes the proof. [

A.3. Jacobian, ecosystem matrix and equilibria

If the following system has a solution
F(X,ylayz):Gl(an’l7J’2):GZ(XJ’IJQ):Oa (A6)

then system (10) has an internal (positive) equilibrium,
which we denote as (x*, y1,%).

To determine the type of species interactions occur-
ring at this equilibrium, it is convenient to examine the
Jacobian of system (10):

J(x,31,32) = (aj)3,3

gL 0P OF . OF
Ox % o2
8G1 8G1 aGl
= — -— -— . (A.
A G o V! ;! (A7)
0G, oG, 0G,
7 7 G, + 222
O 2 an y2 2+ o 2
Then the Jacobian at (x*, y},»%) is
x* 0 0
Jx L) =1 0 yi 0 |EX"¥,»), (A.8)
0 0 3
where
oF OF OF
ox 0Oy; Oy
0G, 090G, 090G
Ex"yi )= — — — A.
(x 7yl’y2) ax ayl 8)/2 ( 9)
Ox 0Jy1 Oy

is the ecosystem matrix of our system. In this matrix, the
ijth term measures the effect of the jth species on the ith
species growth rate.

If prey quality is good for both consumers, i.e. (17)
holds, then, by substituting signs in (13)—(15) into (A.9),
we obtain (18).

If prey quality is bad for both consumers, i.e. (16)
holds, then by substituting signs given by (13)—(15) into
(A.9) we obtain (19).

In the case of bad prey quality,

d]Slx* szzX*

elfi(x*)  erfa(x*)

A=Pr—s1y; — )5 =
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and

B=ns <1 ~ min(K, (dzsz)C*)/(fJEZﬁ(x*)))
— AW + Ay

Then the value of x* is determined by

dlslx* o szzx*
efilx®)  efa(x*)
and the values of y} and yj are given by

. _S(x")Pr —5:B—fh(x")4
o sifo(x*) =safi(xr) 7
yy =N 9B Al )Pr (A.11)
s1./(x*) = 52 f1(x)

Since (A.10) does not depend on K, increasing K does
not effect x*. Because B can increase with K, increasing
K can change y] and y3 in opposite directions (Figs. 1
and 3 illustrate this case).

Observe that model (6) has Ey = (0,0,0) and E; =
(min(K, Pr/q),0,0) as its only axial equilibria. Clearly,
Ey is always a saddle. It is easy to show that if per capita
growth rate of each consumer is negative at Ej, i.e. if
Gi(Ex) <0, i=1,2, then Ej is locally asymptotically
stable and no consumer can invade the system around
this equilibrium. For general functions f;(x) satisfying
(2), there can be several other nonnegative equilibria on
the boundary surfaces (x — y; surface, i=1,2) of 4
(Loladze et al., 2000). The stability of these equilibria
and positive equilibria (if any) can be routinely studied
via Routh—-Hurwitz criteria (Edelstein-Keshet, 1988,
p- 234) when specific functions f;(x), i = 1,2 are given.
Persistent properties of the system can be obtained by
applying existing theory (e.g. Thieme, 1993, and the
references therein).

(A.10)
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