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Abstract. Many lines of evidence lead to the conclusion that ribosomes, and
therefore phosphorus, are potentially important commodities in cancer cells.
Also, the population of cancer cells within a given tumor tends to be highly
genetically and physiologically varied. Our objective here is to integrate these
elements, namely natural selection driven by competition for resources, espe-
cially phosphorus, into mathematical models consisting of delay differential
equations. These models track mass of healthy cells within a host organ, mass
of parenchyma (cancer) cells of various types and the number of blood vessels
within the tumor. In some of these models, we allow possible mechanisms
that may reduce tumor phosphorous uptake or allow the total phosphorus in
the organ to vary. Mathematical and numerical analyses of these models show
that tumor population growth and ultimate size are more sensitive to total
phosphorus amount than their growth rates are. In particular, our simulation
results show that if an artificial mechanism (treatment) can cut the phospho-
rus uptake of tumor cells in half, then it may lead to a three quarter reduction
in ultimate tumor size, indicating an excellent potential of such a treatment.
Also, in general we find that tumors with a relatively high cell death rate
are more susceptible to treatments that block phosphorus uptake by tumor
cells. Similarly, tumors with a large phosphorus requirement and (or) low cell
reproductive rates are also strongly affected by phosphorus limitation.

1. Introduction. As a field of study, cancer biology has just begun a “grand
synthesis” of sorts. The greatest contributors to this synthesis are the geneticists
and cell biologists whose discoveries have uncovered so much of basic cell machinery
that at least the broad outlines of how cancer cells develop and act are becoming
clear (see reviews by Hahn and Weinberg 2002, Hannahan and Weinberg 2000
and Lundberg and Weinberg 1999). However, newcomers, including evolutionary
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biologists and ecologists, are contributing new perspectives that may significantly
affect our understanding of the clinical behavior of tumors.

One might wonder what more we need to know if we already understood, say,
the details of every biochemical and genetic process occurring within every cancer
cell? The problem is that malignant tumors have properties of great clinical signif-
icance that are difficult to deduce and explain from first principles of their cell and
molecular biology alone. For example, all cancer cells live in an ecological system
that requires them to interact with surrounding cells, both healthy and malignant.
Studies in cell and molecular biology have shown how some cancers coerce sur-
rounding healthy cells into a servile role in the tumor stroma. However, those same
cancer cells must compete with these healthy cells for resources, including oxygen,
nutrients and space. The competition does not end there; cancer cells compete
against each other and against healthy cells throughout the body for these same
resources. Approaches from cell biology will define the basic properties of those
relationships, but it will be almost impossible to use cell biology alone to predict
the outcomes of these interactions. However, such considerations are dreadfully
important clinically. If left to complete its normal course, the competition between
tumor and host leads to a generalized wasting syndrome of the host’s body called
cachexia, which occurs in about half of all cancer patients (Tisdale 1997, Barber et
al. 1999).

One resource over which cancer and healthy cells may compete is phosphorus.
Many lines of evidence suggest that cancer cells upregulate ribosome synthesis, a
process that requires large amounts of phosphate (Budde and Grummt 1998, Cairns
and White 1998, Zhai and Comai 2000). In addition, certain cancer-related genes,
both tumor suppressors (gatekeepers) like p53 and oncogenes, including members
of the myc family, are involved in regulating production of ribosomes (Boon et
al. 2001, Donahue et al. 2001, Greasley et al. 2000). Additional studies indicate
that cancer cells with larger, more active nucleoli proliferate more rapidly in vivo
(Derenzini et al. 2000a,b). Since the nucleolus is the site of rDNA transcription and
the initial stages of ribosome formation, these results highlight ribosome biogenesis
as a central process in tumor biology.

Competition for phosphorus or any other resource provided by the host poten-
tially has enormous significance to the clinical course of any malignancy. Cancer
cells suffer a characteristic genomic instability that manifests as gross chromosomal
abnormality and aneuploidy along with mutations associated with disrupted DNA
repair mechanisms (Loeb 1996, Testa 1996). Therefore, the population of cancer
cells within a given tumor tends to be highly genetically and physiologically varied
(see, for example, Bertuzzi et al. 2002). So, we have the elements required for nat-
ural selection: a population of genetically varied individuals in a fierce competition
for resources. Therefore it is possible that natural selection, in addition to its pu-
tative role in determining the incidence of cancer in the first place (Ponder 2001,
Simpson 1997), plays an important role in the clinical behavior of cancer.

One obvious example of the power that natural selection has over clinical tu-
mor behavior is tumor cell resistance to chemotherapy or radiation therapy. But
even without an “outside” influence like chemotherapy, natural selection probably
influences the gross behavior of malignant tumors. For example, in lung cancer,
individual tumors typically contain cells characteristic of more than one histological
type; in fact, individual cells themselves can possess cytologic features of more than
one type of lung cancer (Mabry et al. 1996). Therefore, Mabry et al. 1996) suggest
that histological features of lung cancers change over time, and such changes are
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characteristic of tumor progression throughout the tumor’s life. One can view this
dynamic histology as a result of natural selection acting on various parenchyma cell
types as they compete for resources.

Recent work in the fields of ecosystem ecology and life-history evolution has pro-
duced a set of ideas and analytical frameworks, “biological stoichiometry” and the
“growth rate hypothesis”, that we argue have strong relevance for tumor biology.
Biological stoichiometry is the study of the balance of energy and multiple chemical
elements in biological systems (Sterner and Elser 2002). The growth rate hy-
pothesis proposes that ecologically significant variations in the relative
requirements of an organism for C, N and P are determined by its mass-
specific growth rate because of the heavy demand for P-rich ribosomal
RNA under rapid growth (Elser et al. 2000). Numerous experimental data
show that P-rich animals are unusually sensitive to the P-content of their foods,
suffering strong declines in growth and reproduction when consuming food low in
P, making them vulnerable to erratic population dynamics and possible extinction
in environments that do not supply sufficient P (Sterner and Elser 2002).

The purpose of this paper is to introduce these concepts to cancer biologists,
explore the utility of applying these ideas to a model of tumor dynamics, and to
describe some potential implications of a stoichiometric view for preventative and
therapeutic strategies in cancer. We propose a conceptualization in which tumor
and host are seen as a coupled ecological system, each with particular material
demands that establish the terms of the interaction and thus affect tumor dynamics.
The goal in cancer therapy is to assure that the host (patient) wins in this ecological
competition or, at the least, that there is a long-term stable coexistence between
the two in which the host maintains an acceptable level of health.

Current therapeutic approaches centered on destroying individual cancer cells or
slowing their reproduction, while increasingly successful for many cancers (Brenner
2002), may be inherently limited in their ability to defeat many forms of cancer
(Gatenby et al. 2002). But, by applying a stoichiometric perspective to better
reflect the multivariate material demands and transactions of the players, health
care professionals might be better able to turn the tables of competition in favor
of the patient. To do this, we need to understand the functional ecology of the
evolving tumor in its co-evolving host habitat.

Our objective here is to integrate these elements, namely the growth rate hy-
pothesis and natural selection driven by competition for phosphorus, into a family
of mathematical models. Each tracks mass of healthy cells within a host organ,
mass of parenchyma (cancer) cells of various types and the number of blood vessels
within the tumor. To be more realistic, these models consist of three or more nonlin-
ear delay differential equations. This continues the trend of using delay differential
equations to model life science processes (Kuang 1993, Li et al. 2001).

2. Mathematical models of tumor growth with nutrient limitation. This
set of models applies to a single solid tumor growing within a given organ. The
organ, like the tumor, is capable of growth, but we typically assume that the organ’s
initial mass starts near some genetically determined, “healthy” carrying capacity,
kh, and the tumor is initially vascularized but still relatively small (approximately
0.01 kg). In addition, the tumor parenchyma may contain distinct cell types that
differ in their nutrient use and growth rates.

Therefore, our dependent variables include the following: x is mass (in kg) of
healthy cells within the organ; yi represents tumor mass (in kg) contributed by
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the ith parenchyma cell type; and z expresses mass (in kg) of tumor microvessels.
Biologically, z really tracks mass of mature vascular endothelial cells (VECs) within
the tumor.

We assume that the total amount of phosphorus within the organ is homeostat-
ically regulated at a fixed value, P (in g). However, phosphorus is distributed into
two compartments: extracellular, including blood plasma and interstitial fluid; and
intracellular, which contains fraction f (approximately 2/3) of the total fluid within
a typical organ (Ganong 1999). Let n represent mean amount of phosphorus (g) in
1 kilogram of healthy cells, including both healthy organ tissue and VECs within
the tumor stroma. Similarly, let m be mean amount of phosphorus in 1 kilogram
of parenchyma cells. Then

P − (nx + my + nz) ≡ Pe

is extracellular phosphorus within the organ. A recent report (Chu et al. 2002)
suggests that normal tissues are about 1% elemental phosphorus (dry weight) and
tumor tissues are often over 2% (dry weight).

2.1. Homogeneous tumor. We first build the model for the special case of a
tumor with only one parenchyma cell type. In this model, reproduction of both
healthy and tumor cells is a function of amount of extracellular phosphorus. In
a phosphorus-rich environment, healthy cells and tumor cells can proliferate at
maximum per capita rates a and b, respectively. However, if the extracellular
phosphorus concentration drops below a threshold value, then growth rates of both
healthy and tumor cells are impaired. This consideration is adopted in Andersen
(1997) and Loladze et al. (2000).

For healthy cells, if extracellular phosphorus concentration Pe/fkh is less than n,
the mean phosphorus content in a kilogram of healthy cells, then per capita growth
rate without crowding effects becomes

a
Pe

fnkh
.

A similar set of relationships governs blood vessel dynamics and tumor cell growth,
except in the case of tumor cells, the growth rate decreases whenever concentration
of extracellular phosphorus drops below m. When that happens, maximal tumor

growth rate becomes b
Pe

fmkh
.

Reproduction of tumor cells is further modified by blood supply. Specifically, tu-
mor proliferation rate slows whenever vascularization drops below a certain thresh-
old. In particular, whenever g(z−αy)/y < 1, then the maximum proliferation rate
of tumor cells becomes g(z − αy)/y, where α represents the mass of cancer cells
that one unit of blood vessels can just barely maintain, and g measures sensitivity
of tumor tissue to lack of blood.

In this model we assume that cancer cells suffer a constant per capita mortality,
dy. In addition, the tumor’s growth rate decelerates as it approaches its “carrying
capacity,” kt. Once it reaches that size, proliferation and mortality balance each
other. The value of kt is determined by the physiological status of the host and
in human breast cancer, for example, is approximately 1.0 to 2.3 kg (Spratt et al.
1993).

Similarly, we assume that healthy cells die at constant per capita rate dx. But,
since the tumor competes with healthy tissue for resources, especially blood, the
organ “feels” the tumor. Therefore, the growth rate of healthy tissue decelerates as
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the mass of both the healthy and tumor tissue approaches kh. A similar situation
does not apply to the tumor. The tumor growth rate is only modified by the
relationship between tumor mass and tumor carrying capacity, kt; mass of healthy
tissue has no effect on the tumor.

Blood vessel dynamics are much simpler. First, we assume that new microves-
sels arise from activated VEC precursor cells within the tumor stroma at per capita
rate c if there is no phosphorus limitation. We also assume there is a time delay
τ between activation of vascular precursor cells and construction of functional ves-
sels. This delay represents the time it takes for VEC precursor cells to respond to
angiogenic growth factors, divide, degrade their basement membranes, migrate to
the site of growth and mature into working endothelium (Ji et al. 1998).

At this moment, it is not clear to us whether or not construction of blood vessel
is phosphorus limiting. If not, then the recruitment term is simply cy(t − τ). If

phosphorus is limiting, then the recruitment term becomes
cPe

fnkh
y(t − τ). For

realistic parameters, simulation results suggest that the qualitative dynamics of
the model are essentially unchanged whether phosphorus is limiting or not (figure
9). However, if blood vessel construction is not phosphorus limited, then the tumor
reaches its ultimate size a couple of days sooner than it would if the construction of
blood vessel is phosphorus limited. The differences in the ultimate organ and tumor
sizes are negligible. For this reason, we will conduct our simulation work on models
assuming that blood vessel construction is phosphorus limited but conduct our
mathematical analysis on the model assuming that it is NOT phosphorus limited.

Some evidence suggests that the vascular network within tumors is constantly
being remodeled (Columbo et al. 1996). To reflect this observation, we assume
that mature vessels die at a constant rate dz.

These considerations lead to the following model:

dx

dt
= x

(
amin

(
1,

Pe)
fnkh

)
− dx − (a − dx)

x + y + z

kh

)
,

dy

dt
= y

(
b min

(
1, β

Pe

fmkh

)
min(1, L) − dy − (b − dy)

y + z

kt

)
,

dz

dt
= cmin

(
1,

Pe

fnkh

)
y(t − τ) − dzz,

L =
g(z − αy)

y
.

(2.1)

We have introduced an extra parameter, β, into model (2.1) for the purpose of
exploring the dynamic effects of artificially limiting phosphorus uptake by cancer
cells, by inhibiting membrane transport of phosphate, for instance. When there
is no such therapeutic intervention, β = 1; when therapy is instituted, β < 1.
Also note that when neither blood supply nor phosphorus are limiting, cancer cell
dynamics become logistic.

2.2. Heterogeneous tumor. In actual malignant tumors one often finds a variety
cell types competing for various resources. In the context of model (2.1), these
resources include phosphorus, space and blood supply. In this paper we focus on
competition for the first two resources; competition for blood supply will be dealt
with at another time.

Although actual tumors can contain many parenchyma cell types, we simplify
the system to only two competing varieties, the masses of which are represented
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by y1 and y2. We assume that parenchyma cell types can differ from each other in
only two ways: they may have different intrinsic birth and death rates, b1 and b2,
d1 and d2, respectively; and they may differ in their efficiency of phosphorus use,
meaning that in general m1 �= m2, where mi is the mean phosphorus content of the
i-th cell type.

These assumptions lead to the following extension of model (2.1) to include two
competing cell types:

dx

dt
= x

(
amin

(
1,

Pe

fnkh

)
− dx − (a − dx)

x + y1 + y2 + z

kh

)
,

dy1

dt
= y1

(
b1 min

(
1,

β1Pe

fm1kh

)
min(1, L) − d1 − (b1 − d1)

y1 + y2 + z

kt

)
,

dy2

dt
= y2

(
b2 min

(
1,

β2Pe

fm2kh

)
min(1, L) − d2 − (b2 − d2)

y1 + y2 + z

kt

)
,

dz

dt
= cmin

(
1,

Pe

fnkh

)
(y1(t − τ) + y2(t − τ)) − dzz,

L = g
z − α(y1 + y2)

y1 + y2
,

(2.2)
where Pe becomes P −nx−m1y1−m2y2−nz. Again, we introduced parameters β1

and β2 in the tumor growth equations to measure the effects of artificially regulating
phosphorus uptake by parenchyma cells. Note that model (2.2) reduces to model
(2.1) when y2(0) = 0, with the obvious modifications of subscripts.

In a different context, recent work of Loladze et al. (2000) suggests that stoi-
chiometric constraints promote coexistence among competing species. One goal of
our analysis of model (2.2) will be to determine if such a statement can be made in
the case of heterogeneous tumor growth. Our simulation results indicate that the
answer is negative.

2.3. Heterogeneous tumor model with dietary regulation. In this final ex-
tension of the model we introduce a time-varying organ phosphorus content. First,
we assume that a constant proportion, γ, of dead cell material, particularly phos-
phorus, is removed per unit time from the organ by the blood. Also, we assume
that phosphorus ingested with food is brought to the organ at rate r (g/day).
Then in the setting of a heterogeneous tumor (model 2.2), these assumptions yield
an equation that tracks the total phosphorus in the organ:

dP

dt
= r − γ

(
n(dxx + dzz) + (a − dx)nx

x + y1 + y2 + z

kh

+
∑2

i=1 midiyi +
y1 + y2 + z

kt

2∑
i=1

mi(bi − di)
)

.

Each negative term represents phosphorus liberated by dying cells, both healthy
and cancerous, that is subsequently washed out of the tumor by the blood.
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Together with the assumptions of model (2.2), we obtain the following model of
a heterogeneous tumor with varying total phosphorus:

dx

dt
= x

(
amin

(
1,

Pe

fnkh

)
− dx − (a − dx)

x + y1 + y2 + z

kh

)
,

dy1

dt
= y1

(
b1 min

(
1,

Pe

fm1kh

)
min(1, L) − d1 − (b1 − d1)

y1 + y2 + z

kt

)
,

dy2

dt
= y2

(
b2 min

(
1,

Pe

fm2kh

)
min(1, L) − d2 − (b2 − d2)

y1 + y2 + z

kt

)
,

dz

dt
= cmin

(
1,

Pe

fnkh

)
(y1(t − τ) + y2(t − τ)) − dzz,

dP

dt
= r − γ

(
n(dxx + dzz) + (a − dx)nx

x + y1 + y2 + z

kh
+

2∑
i=1

midiyi+

y1 + y2 + z

kt

2∑
i=1

mi(bi − di)
)

,

L = g
z − α(y1 + y2)

y1 + y2
,

(2.3)
where Pe now becomes P (t) − nx − m1y1 − m2y2 − nz. For a tumor-free patient
it is reasonable to assume that the organ size sits at its carrying capacity, and
supply and depletion of plasma phosphorus is balanced through food intake. In
such scenario, r = γankh. For a healthy person of 70 kg in weight, we estimate
his/her daily consumption of nutritious solid food at about 1.5 kg/day. If we assume
the phosphorus content of food is about 1.4 g for each kilogram, then daily dietary
phosphorus intake is about 2.1 g (Kapur 2000). For a 10 kg organ, its share of
phosphorus is about 0.3 g/day, assuming a homogeneous distribution throughout
the body. These considerations put γ = 0.001 when a = 3 and n = kh = 10 at
tumor-free equilibrium (see Figure 8).

A potential treatment strategy may emerge if we know how different values of r
change the dynamic outcomes of tumor growth in model (2.3).

3. Simulation analysis of the mathematical models. Mathematically, each
of the many minimum functions in models (2.1)-(2.3) divides the dynamics into
two categories. Therefore, for the simplest model (2.1), there are eight possible
dynamical scenarios. It is both challenging and time-consuming to gain a complete
analytical understanding of all possible variations of these three high-dimensional,
nonlinear delay differential equation models. However, realistic parameter values
often naturally restrict or eliminate some possibilities, thereby rendering the anal-
yses of most mathematically possible dynamical scenarios unnecessary. It is thus
logical to perform some simulation work with biologically meaningful parameters
and initial values prior to any serious analytical treatment of our models. Indeed,
as we shall see, only one dynamical scenario of our models is biologically plausible
and important enough to merit careful mathematical study.

We assume that patients vary in size and that organ and tumor carrying capaci-
ties vary in the same direction. As a result, it is easy to observe that our models are
invariant with proper scaling of all variables and parameters. With this property in
mind, we perform our simulation on only one generic patient – a person with a body
mass of about 70 kg and about 700 g of total body phosphorous (Kapur 2000). For
concreteness we assume the tumor arises in the lung, which has a mass of about 15
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Figure 1. A solution for model (2.1) with a = 3,m = 20, n =
10, kh = 10, kt = 3, f = 0.6667, P = 150, α = .05, b = 6, τ =
7, c = .05, dx = dy = 1, dz = 0.2, g = 100 and (x(0), y(0), z(0)) =
(9, 0.01, 0.001). Here we assume no treatment blocking phosphorus
uptake by tumor cells (β = 1). Notice that phosphorus limits the
growth of both healthy and tumor cells (the phosphorus limitation
indicator s < 1.)

kg including extracellular fluid (about 6 kg). Furthermore, if we assume that the
phosphorous is evenly distributed throughout our patient’s body, then the lung’s
share of phosphorous is about 150 g. We further assume that the initial tumor size
is large enough for detection (about 0.01 kg) and therefore is already vascularized.

We begin by investigating models (2.1) and (2.2), in which organ phosphorus con-
tent is held constant. Our extensive simulation work shows that in these models
tumor growth and ultimate size are much more sensitive to total amount of phos-
phorus in the lung than tumor growth rate is (compare figures 1, 2 and 3). When
phosphorus is the most limiting factor for tumor growth, as opposed to blood sup-
ply, ultimate tumor size is roughly proportional to total amount of phosphorus in
the lung. Our simulation results for the model (2.3), where total body phosphorus
is allowed to vary, are consistent with these findings (figure 8). In all simulation

figures we plot both the P limitation indicator (denoted by s = min
(

1,
Pe

fnkh

)
)

and the blood supply limitation indicator (denoted by gs = min
(

1,
g(z − αy)

y

)
)

to help visualize when these are indeed limiting healthy and tumor cell growth.
Simulation also indicates that the time delay τ tends to affect how long it takes a

tumor to reach a given size much more dramatically than changes in organ phospho-
rus content (P (t)) or sensitivity of tumor cells to lack of blood (g) (compare figure
1 and figure 4). Note that simulation results of the first τ days are transitional
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Figure 2. A solution for model (2.1). All parameters and ini-
tial values are identical to that of figure 1, except that we have
lowered P by 20% to 120. Notice that the ultimate tumor size is
reduced slightly more than 20% (from about 0.96 kg to 0.73 kg). It
should be mentioned here that the organ suffers a similar percent
reduction in weight.
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Figure 3. A solution for model (2.1). All parameters and initial
values are identical to that of figure 1, except we have lowered
tumor birth rate b by 20% to 4.8. The ultimate tumor size is
reduced by about 10% (from about 0.96 kg to 0.86 kg). As to be
expected, the organ enjoys a small percent increase in weight.
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Figure 4. A solution for model (2.1). All parameters and initial
values are identical to that of figure 1, except we have increased
the time delay τ from 7 to 11. The ultimate tumor and organ sizes
are unchanged, but the approach to equilibrium is postponed from
about day 32 to day 44.

and may contain artifacts caused by the initial conditions, a commonly observed
phenomena in numerical solutions of delay differential models.

When the tumor contains two parenchyma cell types, then we often observe
that the less malignant type, characterized by a lower phosphorus requirement and
hence lower proliferation and death rates, tends to quickly dominate the tumor
(figure 7). The same conclusion holds true when several tumor cell species coexist
in the tumor.

Phosphate supplementation is a common supportive therapy for oncology pa-
tients suffering hypophosphatemia. However, such supplementation must be care-
fully monitored because of complications associated with the opposite condition,
hyperphosphatemia, most notably hypocalcemia (Warrell 2001). At first sight it
may appear that our models argue for a universal restriction of phosphate in a
cancer patient’s diet; indeed, phosphate supplementation may simply be feeding
the tumor (compare figures 1 and 2). We explored this issue more deeply with
model (2.3). Our results suggest that dietary phosphorus restriction alone is un-
likely to benefit our patient. While it is true that, in the context of model (2.3),
dietary restriction of phosphorus can reduce tumor growth and ultimate size, both
ultimate tumor size and organ size change in the same direction – in fact, almost
proportionally (figure 2). Therefore, restricting phosphorus damages the healthy
organ as much as it does the tumor.

Given this result, we might search for ways to reduce tumor phosphorus uptake
without affecting phosphorus availability to healthy cells. How beneficial would
such a treatment be? We can address this question by activating such a possible
mechanism in models (2.1) and (2.2) by assuming that β, β1 and β2 are less than
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Figure 5. A solution for model (2.1). All parameters and initial
values are identical to that of figure 1, except we have selectively
blocked tumor cell uptake of phosphorus by half (β = 0.5). The
ultimate tumor size is now less than a quarter of that in figure
1. In addition, the organ maintains its healthy size. This result
suggests an excellent potential for such a treatment strategy.

1. When playing out such a scenario in model (2.1) by setting β = 0.5, we reduce
ultimate tumor size by about 75% (figure 5) while maintaining the organ at a
healthy size. Therefore, selectively limiting phosphorus to tumor cells may prevent
the tumor from reaching a lethal size. However, if phosphorus is not limiting,
then such mechanism may not be useful, as confirmed by our simulation when we
increase P from 150 to 250 in model (2.1) (figure 6).

An interesting phenomenon in all these models is that ultimate tumor size is
insensitive to its predetermined carrying capacity. A tumor’s ultimate size depends
mostly on phosphorus supply. For a large range of values, the parameter g does not
affect the tumor size but does change the time it takes for a tumor to reach certain
size. An indirect observation through simulation work of model (2.3) suggests that
only about 0.1% of the P released from the dead tumor cells is flushed out by the
blood. In other words, almost all phosphorus stays in the organ. This raises the
possibility of excessive P accumulating in the organ after any treatment that kills
a large amount of tumor cells, such as some drug treatments modelled in Jackson,
2002. This result, therefore, explains a well-described phenomenon called “tumor
lysis syndrome” in which plasma phosphorus concentration reaches toxic levels after
tumors have been treated with chemotherapy.

4. Mathematical analysis of the models. For realistic parameter values and
initial conditions, the ultimate outcome of all three models is the same: solutions
tend to a positive steady state where phosphorus limits both healthy and tumor cell
growth. One nonintuitive phenomenon is that at this steady state, tumor growth is
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Figure 6. A solution for model (2.1). All parameters and initial
values are identical to that of figure 5, except that we have sub-
stantially increased the total body phosphorus to P = 250 from
150. This change makes phosphorus no longer limiting (phospho-
rus limitation indicator s = 1). In this situation, the tumor still
grows to a large size even when the tumor’s phosphorus uptake is
halved. This result cautions that selectively inhibiting tumor cell
phosphorus uptake, if possible, must be accompanied by dietary
control to be effective.

no longer limited by its blood vessel infrastructure. For this reason, we shall study
in detail the properties of this important steady state.

A comparison of figures 1 and 7 indicates that when the tumor is viewed as
a single entity, models (2.1) and (2.2) essentially generate the same dynamics.
Moreover, varying the supply of phosphorus continuously seems to create no new
dynamical behavior to speak of (figure 8). Hence, we will limit our mathematical
analysis to homogeneous tumor growth.

Although the dynamics of model (2.1) with realistic parameters appears to be
simple – solutions tend to the unique positive steady state E – it defies any in-depth
mathematical treatment, including finding the expression and stability properties of
its positive steady state. However, a realistic simplification presents itself because,
as we noted in section 2, the qualitative dynamics of the model are essentially un-
changed whether phosphorus limits blood vessel construction (figure 9). Therefore,
in this section we will assume that

(A1): The construction of blood vessels is NOT limited by phosphorus supply.

With (A1), model (2.1) becomes the following simplified model:
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Figure 7. A solution for model (2.2) with a = 3,m1 = 20,m2 =
22, n = 10, kh = 10, kt = 3, f = 0.6667, P = 150, α = .05, b1 =
6, b2 = 6.6, τ = 7, c = .05, dx = 1, dz = 0.2, d1 = 1, d2 = 1, g = 100
and (x(0), y1(0), y2(0), z(0)) = (9, 0.01, 0.01, 0.001). This is a typi-
cal example showing that tumor cell types with lower phosphorous
requirements (in this case y1) wins.
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Figure 8. A solution for model (2.3). In this situation, if no
tumor cells were present, the organ would remain at its steady
state, x = 10 kg.
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6, τ = 7, c = .05, dx = dy = 1, dz = 0.2, g = 100 and
(x(0), y(0), z(0)) = (9, 0.01, 0.001).

dx

dt
= x

(
amin

(
1,

Pe

fnkh

)
− dx − (a − dx)

x + y + z

kh

)
,

dy

dt
= y

(
b min

(
1, β

Pe

fmkh

)
min(1, L) − dy − (b − dy)

y + z

kt

)
,

dz

dt
= cy(t − τ) − dzz,

L =
g(z − αy)

y
.

(4.1)

Support for the validity of A1 comes from the fact that the difference between
ultimate sizes of tumors described by models (2.1) and (4.1) are negligible. For ex-
ample, in one run a tumor described by model (2.1) approached 0.8138 kg, whereas
in model (4.1) with the same parameters it settled on a mass of 0.7963 kg.

Our main concern in this section is the stability of the positive steady state E∗

of (4.1). Our analysis is simplified by the following observation: in both models

(2.1) and (4,1), at this steady state E∗,
Pe

fnkh
< 1 and L > 1 (figure 10). Hence

we assume further that

(A2): For model (4.1),
Pe

fnkh
< 1 and L > 1 at E∗.

Clearly (A2) implies that
βPe

fmkh
< 1. With this additional assumption, we

obtain the following explicit expression of E∗ = (x∗, y∗, z∗):



BIOLOGICAL STOICHIOMETRY OF TUMOR DYNAMICS 235

x∗ =
kh

a − dx

[
an

βbm

(
dy + (b − dy)

y∗ + z∗

kt

)
− dx

]
− y∗ − z∗,

y∗ = dzktN/D,

z∗ = cktN/D.

(4.2)

where

N = aPbβ − dxPbβ − dykhma − afmkhdy + bβndxkh + fdxmkhdy

and
D = −fdxdzmkhb − adzfmkhdy − fdxcmkhb − acfmkhdy − adzmkhdy+

adzmkhb + acfmkhb + adzmktbβ + fdxdzmkhdy − dxdzmktbβ + adzfmkhb
−ktbβdzna + ktbβdzndx + fdxcmkhdy + acmkhb − acmkhdy.

Notice that y∗ = 0 if and only if

N = aPbβ − dxPbβ − dykhma − afmkhdy + bβndxkh + fdxmkhdy = 0.

This yields a threshold value for β, which we denote by β∗,

β∗ =
dykhma + afmkhdy − fdxmkhdy

(a − dx)Pb + bndxkh
=

m

b
khdy

a(f + 1) − fdx

(a − dx)P + ndxkh
.

When the parameters assume values as in Figure 1, that is a = 3,m = 20, n =
10, kh = 10, f = 0.6667, P = 150, b = 6, dx = 1, dy = 1, we have β = 0.3611166667,
as confirmed by simulation (Figure 11). Since 1−β measures the proportion of the
tumor’s P uptake blocked by the treatment, we see that the higher the tumor cell
death rate, the smaller the proportion of tumor cell P uptake needs to be blocked
to eliminate the tumor. A similar statement holds true for the tumor’s P content
requirement (m), whereas the opposite is true for the tumor’s birth rate (b).

In order to study stability aspects of the steady state E∗ of (4.1), we need the
following lemma, the proof of which follows directly from that of Theorem 6.5.2
(page 227) in Kuang, 1993.

Lemma 4.1. Assume that the parameters in the following system are positive, and
x∗ > 0, y∗ > 0, z∗ > 0:

dx

dt
= −x(A1(x − x∗) + A2(y − y∗) + A3(z − z∗)),

dy

dt
= −y(B1(x − x∗) + B2(y − y∗) + B3(z − z∗)),

dz

dt
= −(−c(y(t − τ) − y∗) + dz(z − z∗)).

(4.3)

If there are positive constants c1, c2 such that
1): dz > c/c2,
2): B2/c2 > B3 + B1/c1,
3): A1/c1 > A1 + A2/c2

then the steady state E∗ = (x∗, y∗, z∗) is globally asymptotically stable.

Near the steady state E∗, model (4.1) can be rewritten in the form of system
(4.3) with

A1 =
1
kh

(
a

f
+ a − dx) = A3, A2 =

1
kh

(
am

fn
+ a − dx) (4.4)
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Figure 10. A solution for model (4.1) with a = 3,m = 20, n =
10, kh = 10, kt = 3, f = 0.6667, P = 150, α = .05, b = 6, τ =
7, c = .05, dx = dy = 1, dz = 0.2, g = 100 and (x(0), y(0), z(0)) =
(9, 0.01, 0.001). Here we assume no treatment blocking phosphorus
uptake by tumor cells (β = 1) and the construction of blood vessel

is NOT phosphorus limited. Notice that
Pe

fnkh
< 1 and L > 1 at

E∗ for model (4.1).

and

B1 =
bβn

fkhm
, B2 =

bβ

fkh
+

b − dy

kt
, B3 =

bβn

fkhm
+

b − dy

kt
. (4.5)

For a = 3,m = 20, n = 10, kh = 10, f = 0.6667, P = 150, b = 6, dx = 1, dy = 1, β =
1, we can chose c1 = 0.5 and c2 = 0.2 to satisfy conditions 1) through 3) in Lemma
4.1. In other words, we have shown that for this set of parameters, the
positive steady state E∗ of model (4.1) is locally asymptotically stable.
However, simulation suggests that it is actually globally asymptotically stable. So,
this mathematical question remains open.

As we increase P in model (4.1), the condition
Pe

fnkh
< 1 may be violated, and

the positive steady state may become the positive solution of

x∗ + y∗ + z∗ = kh,

B1x
∗ + B2y

∗ + B3z
∗ =

bβP

fmkh
− dy,

cy∗ − dzz
∗ = 0,

(4.6)

where Bi, i = 1, 2, 3 are given by (4.5). In this case, we have

y∗ =
(bβP )/(fmkh) − dy − B1kh

B2 − B1 + (B3 − B1)c/dz
.
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Figure 11. A solution for model (4.1) with β = 0.36, a =
3,m = 20, n = 10, kh = 10, kt = 3, f = 0.6667, P = 150, α =
.05, b = 6, τ = 7, c = .05, dx = dy = 1, dz = 0.2, g = 100 and
(x(0), y(0), z(0)) = (9, 0.8, 0.2). Here we assume a treatment yield-
ing a 64% reduction in phosphorus uptake by tumor cells, and the
construction of blood vessel is NOT phosphorus limited.

Using Lemma 4.1, we can also show that this steady state is locally asymptotically
stable.

A sufficiently large increase in P will lead to a scenario in which
βPe

fmkh
> 1. For

example, when a = 3,m = 20, n = 10, kh = 10, f = 0.6667, P = 150, b = 6, dx =
1, dy = 1, β = 1, we need P > 257.34. In such a case, the positive steady state is
simply E∗ = (kh − kt, dzkt/(c + dz), ckt/(c + dz)), which again by Lemma 4.1, is
locally asymptotically stable.

We summarize the above statements into the following theorem.

Theorem 4.1. Assume that in model (4.1) there is a unique positive steady state
E∗ = (x∗, y∗, z∗). Assume further that there are positive constants c1, c2 such that
1): dz > c/c2,
2): B2/c2 > B3 + B1/c1,
3): A1/c1 > A1 + A2/c2

where A1, A2, B1, B2, B3 are given by (4.4) and (4.5). Then the steady state E∗ =
(x∗, y∗, z∗) is locally asymptotically stable.

In our simulation study, we assume that both normal and tumor cell birth rate
is proportional to per unit phosphorous content (that is ma = nb); suppose also
that the cell death rate is the same for both normal and tumor cells. If in addition,
there is no treatment – that is β = 1 – then we have the following

Special Case: ma = nb, dx = dy, β = 1.
In this special case, we have
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y∗ =
aP − fnkhdx

fn(a − dx)(ρ + 1 + σ) + a(nρ + m + nσ)

=
bP − fmkhdy

fm(a − dy)(ρ + 1 + σ) + b(nρ + m + nσ)
,

where

σ =
c

dz
, ρ =

(
b − dy

kt
− a − dx

kh

)
kh(1 + σ)

a − dx
.

Notice that σ represents the units of tumor biomass supported by a unit of vascular
endothelial cells (VECs) within the tumor body. This expression of tumor steady
state size shows that P plays a clear and prominent role in determining its value.
We observe that the tumor dies out if one can increase the tumor’s death rate or
the tumor’s P requirement, or lower the tumor’s birth rate to certain threshold
levels.

5. Discussion. Our model should be viewed as an attempt to understand the
growth dynamics of a single vascularized solid tumor growing within the confines of
a organ, such as a primary lung or breast tumor. Our model stresses competition
within the environment provided by that organ: healthy and tumor cells competing
for both space and essential but limiting nutrients, although here we consider only
carbon and phosphorous. The form of our models consists of three or more nonlinear
delay differential equations. If applied clinically, such models may be useful in
predicting the time courses of various aspects of tumor dynamics, such as tumor
size and growth rate at a given future date. Therefore, they may give rise to
useful tools that oncologists can use to help decide the proper course of treatment
for specific patients. However, we caution that the models presented here were
not designed for direct clinical application. Much more specific information and
rigorous comparisons between model results and actual tumors is required before
they are applied to treatment decisions in any way.

In the convoluted path leading us to these models, we formulated over a dozen
plausible alternatives and performed extensive simulations on all of them. Surpris-
ingly, all demonstrate similar growth dynamics. In particular, all strongly suggest
that stoichiometric constraints are important model features. Specifically, we ob-
serve that phosphorus availability plays a key role in tumor growth and size, more
so than either birth or death rates. Without such stoichiometric constraints, tu-
mors will invariably follow the simple logistic equation and quickly grow to their
carrying capacities.

The most noteworthy insight gained through this modelling exercise
is that within the tumor entity, slower-growing tumor cell types, which
utilize less phosphorus because their ribosome production demands are
not as great, will dominate the tumor over the time. This competitive
exclusion pressure always threatens to push faster-growing cell types to extinction,
which in turn may provide the evolutionary impetus for these more aggressive tumor
cells to metastasize. This result may explain why metastatic tumor cells typically
differ from those that dominate the primary tumor. One should explore how this
evolutionary insight might be exploited clinically.

One obvious recommendation suggested by this research is to look for ways to
selectively reduce the rate of phosphorus uptake by tumor cells. The advantage
of such a treatment is that it may dramatically reduce ultimate tumor size while
maintaining the organ at a healthy size. This result could be accomplished by



BIOLOGICAL STOICHIOMETRY OF TUMOR DYNAMICS 239

applying drugs capable of selectively blocking phosphorus uptake by tumor cells.
Alternatively, one could use a nutritionally worthless inhibitor that competes with
phosphate for the binding site on membrane phosphate transporters. This strategy
is particularly intriguing since it would tend to avoid the toxic effect of exces-
sive phosphorus liberated from dead tumor cells, a situation that causes, in part,
“tumor lysis syndrome,” a well known phenomenon that results from destruction
of tumor cells during chemotherapy (Warrell 2001). Unfortunately, since little is
known about phosphorus transport by cells outside the kidney tubules or small
intestine, more specific suggestions regarding what agents would be most useful are
not possible.

A second plausible treatment suggested by this research is to implant into the
tumor less malignant or benign tumor cells, or simply healthy cells if possible, that
require less phosphorus and thus are likely to out-compete the original tumor cells.
Alternatively, one can try to genetically manipulate existing tumor cells to generate
less malignant or benign tumor cells that will do the same thing.
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